skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Metz, Hillery_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundAnopheles gambiaedensovirus (AgDNV) is a highly species-specific parvovirus that reaches high titers in adultAnopheles gambiaemosquitoes with few transcriptomic effects and minimal significant fitness effects. Given these characteristics, AgDNV has been proposed as a viral vector for basic research and mosquito control. Previous work created an AgDNV co-expression system with a wild-type AgDNV helper plasmid and a transducing plasmid expressing enhanced green fluorescent protein (EGFP) that can be used to co-transfect cells to generate infectious recombinant transducing AgDNV virions. Generated virions infect theAn. gambiaemidgut, fat body, and ovaries, yet this viral vector system is limited in the size of transgenes that can be expressed due to capsid packaging limitations. MethodsConsidering these size constraints, we created an artificial intron within the EGFP gene of the transducing construct that can express small pieces of genetic material such as microRNAs (miRNAs), microRNA sponges, or other small sequences. Placement of this intron in EGFP created a fluorescent reporter such that incorrect splicing produces a frameshift mutation in EGFP and an early stop codon, whereas correct splicing results in normal EGFP expression and co-transcription of the intronic genetic cargo. A selection of miRNAs with predicted or demonstrated importance in mosquito immunity and reproduction with expression localized to the fat body or ovaries were chosen as intronic cargo. Construct expression and splicing was evaluated, and the impact of miRNA expression on putative miRNA targets was measuredin vitroandin vivo. ResultsThe created intron was correctly spliced in cells and mosquitoes; however, miRNA delivery resulted in inconsistent changes to miRNA and predicted target gene transcript levels—possibly due to organ-specific miRNA expression or inaccurate putative target predictions leading to miRNA–target gene sequence mismatch. ConclusionsAlthough our results on target gene expression were inconsistent, with optimization this viral vector and developed intron have potential as an expression tool withinAn. gambiaemosquitoes or cell lines. Graphical Abstract 
    more » « less
  2. Abstract Ticks are important vectors of pathogenic viruses, bacteria, and protozoans to humans, wildlife, and domestic animals. Due to their life cycles, ticks face significant challenges related to water homeostasis. When blood‐feeding, they must excrete water and ions, but when off‐host (for stretches lasting several months), they must conserve water to avoid desiccation. Aquaporins (AQPs), a family of membrane‐bound water channels, are key players in osmoregulation in many animals but remain poorly characterized in ticks. Here, we bioinformatically identified AQP‐like genes from the deer tickIxodes scapularisand used phylogenetic approaches to map the evolution of the aquaporin gene family in arthropods. Most arachnid AQP‐like sequences (including those ofI. scapularis) formed a monophyletic group clustered within aquaglycerolporins (GLPs) from bacteria to vertebrates. This gene family is absent from insects, revealing divergent evolutionary paths for AQPs in different hematophagous arthropods. Next, we sequenced the full‐length cDNA ofI. scapularisaquaporin 1 (IsAQP1) and expressed it heterologously inXenopusoocytes to functionally characterize its permeability to water and solutes. Additionally, we examinedIsAQP1expression across different life stages and adult female organs. We foundIsAQP1is an efficient water channel with high expression in salivary glands prior to feeding, suggesting it plays a role in osmoregulation before or during blood feeding. Its functional properties are unique: unlike most GLPs,IsAQP1has low glycerol permeability, and unlike most AQPs, it is insensitive to mercury. Together, our results suggestIsAQP1plays an important role in tick water balance physiology and that it may hold promise as a target of novel vector control efforts. 
    more » « less